Digital health and acute kidney injury: consensus report of the 27th Acute Disease Quality Initiative workgroup

Laura
  • Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive care Med. 41, 1411–1423 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Venkataraman, R. & Kellum, J. A. Prevention of acute renal failure. Chest 131, 300–308 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sarbadhikari, S. & Sarbadhikari, S. N. The global experience of digital health interventions in COVID-19 management. Indian J. Public Health 64, S117–S124 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Ronquillo, Y., Meyers, A. & Korvek, S. J. StatPearls (StatPearls Publishing LLC., 2022).

  • Chawla, L. S. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 workgroup. Nat. Rev. Nephrol. 13, 241–257 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Kashani, K. et al. Quality improvement goals for acute kidney injury. Clin. J. Am. Soc. Nephrol. 14, 941–953 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kellum, J. A., Bellomo, R. & Ronco, C. Acute Dialysis Quality Initiative (ADQI): methodology. Int. J. Artif. Organs 31, 90–93 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • U. S. Food and Drug Administration. What is digital health? https://www.fda.gov/medical-devices/digital-health-center-excellence/what-digital-health (2020).

  • World Health Organization. Digital health. https://www.who.int/health-topics/digital-health#tab=tab_1 (2020).

  • Healthcare Information and Management Systems Society. Digital health transformation: your blueprint for digital health advancement. https://www.himss.org/what-we-do-solutions/digital-health-transformation?gclid=EAIaIQobChMIsdqA6sDX9wIV5BTUAR1evQXIEAAYASAAEgLNbPD_BwE (2005).

  • American Medical Association. AMA digital health care 2022 study findings. https://www.ama-assn.org/about/research/ama-digital-health-care-2022-study-findings (2022).

  • Hunter, J. S. Enhancing Friedman’s “fundamental theorem of biomedical informatics”. J. Am. Med. Inf. Assoc. 17, 112–113 (2010).

    Article 

    Google Scholar
     

  • Jain, G., Ahmad, M. & Wallace, E. L. Technology, telehealth, and nephrology: the time is now. Kidney360 1, 834–836 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang, Y., Chen, H., Qazi, H. & Morita, P. P. Intervention and evaluation of mobile health technologies in management of patients undergoing chronic dialysis: scoping review. JMIR Mhealth Uhealth 8, e15549 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Loncar-Turukalo, T., Zdravevski, E., Machado da Silva, J., Chouvarda, I. & Trajkovik, V. Literature on wearable technology for connected health: scoping review of research trends, advances, and barriers. J. Med. Internet Res. 21, e14017 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Digital Therapeutics Alliance, D. T. Transforming global healthcare by advancing digital therapeutics. https://dtxalliance.org/ (2022).

  • Barracca, A. et al. Digital health: a new frontier. J. Transl. Crit. Care Med. 5, e00018 (2023).

    Article 

    Google Scholar
     

  • Ramakrishnan, P., Yan, K., Balijepalli, C. & Druyts, E. Changing face of healthcare: digital therapeutics in the management of diabetes. Curr. Med. Res. Opin. 37, 2089–2091 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Tolan, N. V. et al. The impact of outpatient laboratory alerting mechanisms in patients with AKI. Kidney360 2, 1560–1568 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, Y. et al. Value of electronic alerts for acute kidney injury in high-risk wards: a pilot randomized controlled trial. Int. Urol. Nephrol. 50, 1483–1488 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kothari, T., Jensen, K., Mallon, D., Brogan, G. & Crawford, J. Impact of daily electronic laboratory alerting on early detection and clinical documentation of acute kidney injury in hospital settings. Acad. Pathol. 5, 2374289518816502 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • West Midlands Acute Medicine Collaborative. The impact of the NHS electronic-alert system on the recognition and management of acute kidney injury in acute medicine. Clin. Med. 19, 109–113 (2019).

    Article 

    Google Scholar
     

  • Thomas, M. E. et al. The acute kidney outreach to prevent deterioration and death trial: a large pilot study for a cluster-randomized trial. Nephrol. Dial. Transpl. 36, 657–665 (2021).

    Article 

    Google Scholar
     

  • Tollitt, J. et al. Improved management of acute kidney injury in primary care using e-alerts and an educational outreach programme. Fam. Pract. 35, 684–689 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Colpaert, K. et al. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class. Crit. Care Med. 40, 1164–1170 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Arias Pou, P., Aquerreta Gonzalez, I., Idoate Garcia, A. & Garcia-Fernandez, N. Improvement of drug prescribing in acute kidney injury with a nephrotoxic drug alert system. Eur. J. Hosp. Pharm. 26, 33–38 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Selby, N. M. et al. An organizational-level program of intervention for AKI: a pragmatic stepped wedge cluster randomized trial. J. Am. Soc. Nephrol. 30, 505–515 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCoy, A. B. et al. Real-time pharmacy surveillance and clinical decision support to reduce adverse drug events in acute kidney injury: a randomized, controlled trial. Appl. Clin. Inf. 3, 221–238 (2012).

    Article 

    Google Scholar
     

  • Kotwal, S. et al. Electronic alerts and a care bundle for acute kidney injury — an Australian cohort study. Nephrol. Dial. Transplant. 38, 610–617 (2022).

    Article 

    Google Scholar
     

  • Goldstein, S. L. et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 90, 212–221 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Kellum, J. A., Kane-Gill, S. L. & Handler, S. M. Can decision support systems work for acute kidney injury? Nephrol. Dial. Transpl. 30, 1786–1789 (2015).

    Article 

    Google Scholar
     

  • Wilson, F. P. et al. Electronic health record alerts for acute kidney injury: multicenter, randomized clinical trial. BMJ 372, m4786 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, S. L. et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 97, 580–588 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wilson, F. P. et al. Automated, electronic alerts for acute kidney injury: a single-blind, parallel-group, randomised controlled trial. Lancet 385, 1966–1974 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pattharanitima, P. et al. Comparison of approaches for prediction of renal replacement therapy-free survival in patients with acute kidney injury. Blood Purif. 50, 621–627 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Akl, A. I., Sobh, M. A., Enab, Y. M. & Tattersall, J. Artificial intelligence: a new approach for prescription and monitoring of hemodialysis therapy. Am. J. Kidney Dis. 38, 1277–1283 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Neyra, J. A. & Nadkarni, G. N. Continuous kidney replacement therapy of the future: innovations in information technology, data analytics, and quality assurance systems. Adv. Chronic Kidney Dis. 28, 13–19 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Kang, M. W. et al. Machine learning model to predict hypotension after starting continuous renal replacement therapy. Sci. Rep. 11, 17169 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Park, S. et al. Impact of electronic Acute Kidney Injury (AKI) alerts with automated nephrologist consultation on detection and severity of AKI: a quality improvement study. Am. J. Kidney Dis. 71, 9–19 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Kolhe, N. V. et al. Impact of compliance with a care bundle on acute kidney injury outcomes: a prospective observational study. PLoS One 10, e0132279 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hodgson, L. E. et al. The ICE-AKI study: impact analysis of a clinical prediction rule and electronic AKI alert in general medical patients. PLoS One 13, e0200584 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Newton, E. S., Kurzen, E. A., Linnemann, R. W. & Shin, H. S. Use of the NINJA (Nephrotoxic Injury Negated by Just-in-Time Action) program to identify nephrotoxicity in pediatric patients with cystic fibrosis. J. Pediatr. Pharmacol. Ther. 26, 379–383 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane-Gill, S. L., Barreto, E. F., Bihorac, A. & Kellum, J. A. Development of a theory-informed behavior change intervention to reduce inappropriate prescribing of nephrotoxins and renally eliminated drugs. Ann. Pharmacother. 55, 1474–1485 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lamming, L. et al. Barriers and enablers to the implementation of a complex quality improvement intervention for acute kidney injury: a qualitative evaluation of stakeholder perceptions of the Tackling AKI study. PLoS One 14, e0222444 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koyner, J. L., Carey, K. A., Edelson, D. P. & Churpek, M. M. The development of a machine learning inpatient acute kidney injury prediction model. Crit. Care Med. 46, 1070–1077 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Zimmerman, L. P. et al. Early prediction of acute kidney injury following ICU admission using a multivariate panel of physiological measurements. BMC Med. Inf. Decis. Mak. 19, 16 (2019).

    Article 

    Google Scholar
     

  • Koyner, J. L., Adhikari, R., Edelson, D. P. & Churpek, M. M. Development of a multicenter ward-based AKI prediction model. Clin. J. Am. Soc. Nephrol. 11, 1935–1943 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chiofolo, C., Chbat, N., Ghosh, E., Eshelman, L. & Kashani, K. Automated continuous acute kidney injury prediction and surveillance: a random forest model. Mayo Clin. Proc. 94, 783–792 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Schwager, E. et al. Accurate and interpretable prediction of ICU-acquired AKI. J. Crit. Care 75, 154278 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Rank, N. et al. Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. NPJ Digit. Med. 3, 139 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. et al. Predictive modeling of the risk of acute kidney injury in critical care: a systematic investigation of the class imbalance problem. AMIA Jt. Summits Transl. Sci. Proc. 2019, 809–818 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, Z. et al. Identifying sub-phenotypes of acute kidney injury using structured and unstructured electronic health record data with memory networks. J. Biomed. Inf. 102, 103361 (2020).

    Article 

    Google Scholar
     

  • Tomašev, N. et al. A clinically applicable approach to continuous prediction of future acute kidney injury. Nature 572, 116–119 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Churpek, M. M. et al. Internal and external validation of a machine learning risk score for acute kidney injury. JAMA Netw. Open. 3, e2012892 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Song, X. et al. Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction. Nat. Commun. 11, 5668 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Al-Jaghbeer, M., Dealmeida, D., Bilderback, A., Ambrosino, R. & Kellum, J. A. Clinical decision support for in-hospital AKI. J. Am. Soc. Nephrol. 29, 654–660 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Bataineh, A. et al. Sustained effects of a clinical decision support system for acute kidney injury. Nephrol. Dial. Transpl. 35, 1819–1821 (2020).

    Article 

    Google Scholar
     

  • Barker, J. et al. Electronic alerts for acute kidney injury across primary and secondary care. BMJ Open. Qual. 10, e000956 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes, J. et al. Acute kidney injury electronic alerts in primary care — findings from a large population cohort. QJM 110, 577–582 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Holmes, J. et al. Utility of electronic AKI alerts in intensive care: a national multicentre cohort study. J. Crit. Care 44, 185–190 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Holmes, J., Donovan, K., Geen, J., Williams, J. & Phillips, A. O. Acute kidney injury demographics and outcomes: changes following introduction of electronic acute kidney injury alerts — an analysis of a national dataset. Nephrol. Dial. Transpl. 36, 1433–1439 (2021).

    Article 

    Google Scholar
     

  • Holmes, J. et al. Community acquired acute kidney injury: findings from a large population cohort. QJM 110, 741–746 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dong, J. et al. Machine learning model for early prediction of acute kidney injury (AKI) in pediatric critical care. Crit. Care 25, 288 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Flechet, M. et al. Machine learning versus physicians’ prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKI predictor. Crit. Care 23, 282 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Neyra, J. A. et al. Prediction of mortality and major adverse kidney events in critically ill patients with acute kidney injury. Am. J. Kidney Dis. 81, 36–47 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Lei, V. J. et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA Netw. Open. 2, e1916921 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Demirjian, S. et al. Predictive accuracy of a perioperative laboratory test-based prediction model for moderate to severe acute kidney injury after cardiac surgery. JAMA 327, 956–964 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rashidi, H. H. et al. Early recognition of burn- and trauma-related acute kidney injury: a pilot comparison of machine learning techniques. Sci. Rep. 10, 205 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martinez, D. A. et al. Early prediction of acute kidney injury in the emergency department with machine-learning methods applied to electronic health record data. Ann. Emerg. Med. 76, 501–514 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Macedo, E. et al. Recognition and management of community-acquired acute kidney injury in low-resource settings in the ISN 0by25 trial: a multi-country feasibility study. PLoS Med. 18, e1003408 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Montanari, A. et al. Can teledialysis help in the clinical management of patients on remote hemodialysis? Int. J. Artif. organs 15, 397–400 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Androga, L. A. et al. Provider perspectives and clinical outcomes with inpatient telenephrology. Clin. J. Am. Soc. Nephrol. 17, 655–662 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kane-Gill, S. L. & Rincon, F. Expansion of telemedicine services: telepharmacy, telestroke, teledialysis, tele-emergency medicine. Crit. care Clin. 35, 519–533 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Mayer, K. P. et al. Acute kidney injury contributes to worse physical and quality of life outcomes in survivors of critical illness. BMC Nephrol. 23, 137 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Silver, S. A. et al. What insights do patients and caregivers have on acute kidney injury and posthospitalisation care? A single-centre qualitative study from Toronto, Canada. BMJ Open. 8, e021418 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fleming, J. N. et al. Impact of a pharmacist-led, mHealth-based intervention on tacrolimus trough variability in kidney transplant recipients: a report from the TRANSAFE Rx randomized controlled trial. Am. J. Health Syst. Pharm. 78, 1287–1293 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McGillicuddy, J. W., Chandler, J. L., Sox, L. R. & Taber, D. J. Exploratory analysis of the impact of an mhealth medication adherence intervention on tacrolimus trough concentration variability: post hoc results of a randomized controlled trial. Ann. Pharmacother. 54, 1185–1193 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gonzales, H. M. et al. Pharmacist-led mobile health intervention and transplant medication safety: a randomized controlled clinical trial. Clin. J. Am. Soc. Nephrol. 16, 776–784 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Castro, A. C. et al. Wearable artificial kidney and wearable ultrafiltration device vascular access — future directions. Clin. Kidney J. 12, 300–307 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wieringa, F. P., Broers, N. J. H., Kooman, J. P., Van Der Sande, F. M. & Van Hoof, C. Wearable sensors: can they benefit patients with chronic kidney disease? Expert. Rev. Med. Devices 14, 505–519 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Siew, E. D. et al. Improving care for patients after hospitalization with AKI. J. Am. Soc. Nephrol. 31, 2237–2241 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ronco, C., Rizo-Topete, L., Serrano-Soto, M. & Kashani, K. Pro: prevention of acute kidney injury: time for teamwork and new biomarkers. Nephrol. Dial. Transpl. 32, 408–413 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Park, S. M. et al. A mountable toilet system for personalized health monitoring via the analysis of excreta. Nat. Biomed. Eng. 4, 624–635 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Boehmer, K. R. et al. Capacity coaching: a new strategy for coaching patients living with multimorbidity and organizing their care. Mayo Clin. Proc. 94, 278–286 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Rizo-Topete, L. M., Rosner, M. H. & Ronco, C. Acute kidney injury risk assessment and the nephrology rapid response team. Blood Purif. 43, 82–88 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Coffey, J. D. et al. Implementation of a multisite, interdisciplinary remote patient monitoring program for ambulatory management of patients with COVID-19. NPJ Digit. Med. 4, 123 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Connell, A. & Laing, C. Acute kidney injury. Clin. Med. 15, 581–584 (2015).

    Article 

    Google Scholar
     

  • Chang, J., Ronco, C. & Rosner, M. H. Computerized decision support systems: improving patient safety in nephrology. Nat. Rev. Nephrol. 7, 348–355 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goldstein, S. L. et al. Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132, e756–e767 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Connell, A. et al. Evaluation of a digitally-enabled care pathway for acute kidney injury management in hospital emergency admissions. NPJ Digit. Med. 2, 67 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Van Driest, S. L. et al. Acute kidney injury risk-based screening in pediatric inpatients: a pragmatic randomized trial. Pediatr. Res. 87, 118–124 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Bauer, M. S., Damschroder, L., Hagedorn, H., Smith, J. & Kilbourne, A. M. An introduction to implementation science for the non-specialist. BMC Psychol. 3, 32 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aarons, G. A., Hurlburt, M. & Horwitz, S. M. Advancing a conceptual model of evidence-based practice implementation in public service sectors. Adm. Policy Ment. Health 38, 4–23 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • NHS. Design principles. NHS Digital Service Manual https://service-manual.nhs.uk/design-system/design-principles (2022).

  • Kayser, L., Kushniruk, A., Osborne, R. H., Norgaard, O. & Turner, P. Enhancing the effectiveness of consumer-focused health information technology systems through ehealth literacy: a framework for understanding users’ needs. JMIR Hum. Factors 2, e9 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Camacho, J., Zanoletti-Mannello, M., Landis-Lewis, Z., Kane-Gill, S. L. & Boyce, R. D. A conceptual framework to study the implementation of clinical decision support systems (BEAR): literature review and concept mapping. J. Med. Internet Res. 22, e18388 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Greenhalgh, T. et al. The NASSS-CAT tools for understanding, guiding, monitoring, and researching technology implementation projects in health and social care: protocol for an evaluation study in real-world settings. JMIR Res. Protoc. 9, e16861 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Moffett, B. S. & Goldstein, S. L. Acute kidney injury and increasing nephrotoxic-medication exposure in noncritically-ill children. Clin. J. Am. Soc. Nephrol. 6, 856–863 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zappitelli, M. et al. Ascertainment and epidemiology of acute kidney injury varies with definition interpretation. Clin. J. Am. Soc. Nephrol. 3, 948–954 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kirkendall, E. S. et al. Development and performance of electronic acute kidney injury triggers to identify pediatric patients at risk for nephrotoxic medication-associated harm. Appl. Clin. Inf. 5, 313–333 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Walsh, K. E., Bundy, D. G. & Landrigan, C. P. Preventing health care-associated harm in children. JAMA 311, 1731–1732 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leape, L. L. & Berwick, D. M. Five years after to err is human: what have we learned. JAMA 293, 2384–2390 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Landrigan, C. P. et al. Temporal trends in rates of patient harm resulting from medical care. N. Engl. J. Med. 363, 2124–2134 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Shekelle, P. G. et al. Assessing the Evidence for Context-Sensitive Effectiveness and Safety of Patient Safety Practices: Developing Criteria (Agency for Healthcare Research and Quality, 2010).

  • Wilson, F. P. et al. A randomized clinical trial assessing the effect of automated medication-targeted alerts on acute kidney injury outcomes. Nat. Commun. 14, 2826 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bourdeaux, C. et al. Impact of a computerized decision support tool deployed in two intensive care units on acute kidney injury progression and guideline compliance: a prospective observational study. Crit. Care 24, 656 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Price-Haywood, E. G., Harden-Barrios, J., Ulep, R. & Luo, Q. eHealth literacy: patient engagement in identifying strategies to encourage use of patient portals among older adults. Popul. Health Manag. 20, 486–494 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Triana, A. J., Gusdorf, R. E., Shah, K. P. & Horst, S. N. Technology literacy as a barrier to telehealth during COVID-19. Telemed. J. E Health 26, 1118–1119 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • UK Government. The Future of Healthcare: Our Vision for Digital, Data and Technology in Health and Care https://www.gov.uk/government/publications/the-future-of-healthcare-our-vision-for-digital-data-and-technology-in-health-and-care/the-future-of-healthcare-our-vision-for-digital-data-and-technology-in-health-and-care (2018).

  • Goldstein, B. A., Navar, A. M., Pencina, M. J. & Ioannidis, J. P. Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review. J. Am. Med. Inf. Assoc. 24, 198–208 (2017).

    Article 

    Google Scholar
     

  • Selby, N. M. et al. Standardizing the early identification of acute kidney injury: the NHS England national patient safety alert. Nephron 131, 113–117 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Singh, K. et al. Patients’ and nephrologists’ evaluation of patient-facing smartphone apps for CKD. Clin. J. Am. Soc. Nephrol. 14, 523–529 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Singh, K. et al. Many mobile health apps target high-need, high-cost populations, but gaps remain. Health Aff. 35, 2310–2318 (2016).

    Article 

    Google Scholar
     

  • Rodriguez, J. A. & Singh, K. The Spanish availability and readability of diabetes apps. J. Diabetes Sci. Technol. 12, 719–724 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Walter, Y. The rapid competitive economy of machine learning development: a discussion on the social risks and benefits. AI Ethics https://doi.org/10.1007/s43681-023-00276-7 (2023).

  • Denham, E. RFA0627721 — Provision of Patient Data to DeepMind https://ico.org.uk/media/action-weve-taken/undertakings/2014353/undertaking-cover-letter-revised-04072017-to-first-person.pdf (2017).

  • Royal Free London NHS Foundation Trust. Information Commissioner’s Office (ICO) Investigation https://www.royalfree.nhs.uk/patients-visitors/how-we-use-patient-information/information-commissioners-office-ico-investigation-into-our-work-with-deepmind/ (2019).

  • Barasch, J., Zager, R. & Bonventre, J. V. Acute kidney injury: a problem of definition. Lancet 389, 779–781 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. 2 (Suppl.), 1–138 (2012).

  • Selby, N. M. et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin. J. Am. Soc. Nephrol. 7, 533–540 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • UK Renal Registry. Acute Kidney Injury (AKI) in England — A Report on the Nationwide Collection of AKI Warning Test Scores from 2018 https://ukkidney.org/sites/renal.org/files/AKI_report_FINAL_13072020.pdf (2020).

  • Hoste, E. A. J. et al. Global epidemiology and outcomes of acute kidney injury. Nat. Rev. Nephrol. 14, 607–625 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummins, N. & Schuller, B. W. Five crucial challenges in digital health. Front. Digit. Health 2, 536203 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cordeiro, J. V. Digital technologies and data science as health enablers: an outline of appealing promises and compelling ethical, legal, and social challenges. Front. Med. 8, 647897 (2021).

    Article 

    Google Scholar
     

  • Čartolovni, A., Tomičić, A. & Lazić Mosler, E. Ethical, legal, and social considerations of AI-based medical decision-support tools: a scoping review. Int. J. Med. Inform. 161, 104738 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Suresh, H. & Guttag, J. Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ‘21) (ACM, 2021).

  • Julien, H. M., Eberly, L. A. & Adusumalli, S. Telemedicine and the forgotten America. Circulation 142, 312–314 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, G. K. L. et al. Telemedicine in resource-limited settings to optimize care for multidrug-resistant tuberculosis. Front. Public. Health 7, 222 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yala, A. et al. Multi-institutional validation of a mammography-based breast cancer risk model. J. Clin. Oncol. 40, 1732–1740 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Yala, A. et al. Toward robust mammography-based models for breast cancer risk. Sci. Transl. Med. 13, eaba4373 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Price, W. N. II. Medical AI and Contextual Bias. 33 Harv. J.L. & Tech. 66 (2019), U of Michigan Public Law Research Paper No. 632 https://ssrn.com/abstract=3347890 (2019).

  • Gerke, S., Minssen, T. & Cohen, G. Ethical and legal challenges of artificial intelligence-driven healthcare. In Artificial Intelligence in Healthcare (eds. Bohr, A. & Memarzadeh, K.) Ch. 12, 295–336 (Elsevier, 2020).

  • Brall, C., Schroder-Back, P. & Maeckelberghe, E. Ethical aspects of digital health from a justice point of view. Eur. J. Public. Health 29, 18–22 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • World Health Organization. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance https://www.who.int/publications-detail-redirect/9789240029200 (2021).

  • Shcherbina, A. et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort. J. Pers. Med. 7, 3 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Valbuena, V. S. M. et al. Racial bias and reproducibility in pulse oximetry among medical and surgical inpatients in general care in the Veterans Health Administration 2013–19: multicenter, retrospective cohort study. BMJ 378, e069775 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vogels, E. A. Digital divide persists even as Americans with lower incomes make gains in tech adoption. https://www.pewresearch.org/short-reads/2021/06/22/digital-divide-persists-even-as-americans-with-lower-incomes-make-gains-in-tech-adoption/ (2021).

  • The White House. Blueprint for an AI Bill of Rights: Making Automated Systems Work for the American People https://www.whitehouse.gov/ostp/ai-bill-of-rights/ (2022).

  • European Commission. A European Approach to Artificial Intelligence https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence (2021).

  • Metaxa, D. et al. Auditing algorithms: understanding algorithmic systems from the outside in. Found. Trends Hum. Comput. Interact. 14, 272–344 (2021).

    Article 

    Google Scholar
     

  • Obermeyer, Z. et al. Algorithmic Bias Playbook https://www.chicagobooth.edu/-/media/project/chicago-booth/centers/caai/docs/algorithmic-bias-playbook-june-2021.pdf (2021).

  • Acute Dialysis Quality Initiative. AKI in digital health figures. https://pittccmblob.blob.core.windows.net/adqi/27fig.pdf (2022).

  • Next Post

    When Dental Tech Meets Precision: The Argument for DIA-Affiliated IT Support

    In today’s tech-savvy world, every profession finds itself intertwined with the advances of technology. Dental professionals are no exception. With evolving digital solutions to improve patient care, expert IT support is more pressing than ever. Enter the Dental Integrators Association (DIA), which bridges the tech-know-how gap for dental professionals. But […]
    When Dental Tech Meets Precision: The Argument for DIA-Affiliated IT Support

    You May Like